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Sustainable Development Pathways for
Plain Cities from a Multi-Model Integration
Perspective: A Case Study of Chengdu
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Elucidating the trajectory of landscape ecological risk in Chengdu provides an empirical basis for ecological
risk management within the city's jurisdiction, holding important practical value for promoting urban sustainable
development, Through five periods of land use data covering the period of 2000-2020, this paper employs the
landscape pattern index method to evaluate the landscape ecological risk index for the corresponding years in
an effort to delineate the evolving patterns of the risk over time and space, To identify the clustered distribution
of landscape ecological risk, we conducted a spatial autocorrelation analysis, Using the MOP-FLUS model, the
geographical arrangement of landscape categories under four distinct 2035 scenarios is projected, enabling
predictions of future landscape ecological risk trends, The findings reveal the following: (1) From 2000 to 2020, the
overall landscape ecological risk in Chengdu showed a declining trend, and the risk level structure continued to
optimize; (2) the landscape ecological risk index presented an overall pattern of "lower in the west and higher in the
east," with low-risk areas consistently clustered in the western ecological barrier and with high-risk areas persistently
concentrated in the central plains; (3) multi-scenario simulations demonstrate that Ecological-Priority Development
scenario can effectively control the expansion of high-risk areas, representing the optimal pathway for maintaining
regional ecological sustainability,

ZFH|o{ Landscape type, Landscape ecological risk, Multi-scenario, MOP-FLUS model

I. Introduction

The global wave of urbanization, while a cornerstone of socioeconomic
development, poses unprecedented challenges to regional ecological
sustainability. By 2050, nearly 70% of the world’s population is projected

to reside in urban areas, marking a significant transition that intensifies
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competition for land and triggers a range of cascading environmental
issues, including landscape fragmentation, biodiversity loss, and ecosystem
degradation. These pressures are particularly intense in flat regions,
where topography and few natural barriers promote rapid and frequently
disordered urban sprawl. Understanding and steering the sustainable
development of these “plain cities™—defined here as urban entities situated
predominantly on flat terrain, characterized by intensive land use, low
natural resistance to spatial expansion, and high vulnerability of their
intertwined agricultural and semi-natural ecosystems—is therefore a critical
global imperative.

Landscape Ecological Risk (LER) assessment has emerged as a vital tool
for quantifying these impacts. Simply put, LER measures the likelihood of
ecosystem degradation resulting from changes in landscape patterns caused
by human and natural disturbances. The widely adopted landscape pattern
index method effectively translates land-use change into spatiotemporal
risk patterns, making it suitable for regional-scale studies. While numerous
studies have used this method to reconstruct historical LER, a significant
gap remains in proactively forecasting future risk under alternative
development scenarios.

Accurately predicting future LER hinges on reliably simulating land-use
configurations. While foundational models like CA-Markov (Hamad et al.,
2018) and CLUE-S (Luo et al,, 2010) exhibit limitations in simulating complex
competition among land-use types, the integrated MOP-FLUS model
offers a superior framework. The FLUS model adeptly handles complex
interactions in human-dominated landscapes (Liu et al., 2021), whereas Multi-
Objective Programming (MOP) incorporates top-down optimization for
conflicting goals such as economic growth and ecological conservation (Guo
et al, 2023). This integration is particularly promising for application in plain

cities, whose unique spatial dynamics—where the highest ecological risks
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may not be in the dense urban core, but rather in the peri-urban fringe and
along sensitive corridors—require a dedicated investigation.

To bridge these gaps, this study employs the MOP-FLUS model
to explore sustainable pathways for plain cities, using Chengdu as a
paradigmatic case. Chengdu, a major metropolis on the Chengdu Plain,
exemplifies a plain city with its flat topography, rapid circular expansion,
and intense competition among farmland, ecological, and construction
land. We first assess the spatiotemporal evolution of LER from 2000
to 2020, then simulate and compare LER patterns for 2035 under four
scenarios: Natural Development (ND), Economic-Priority Development (END),
Ecological-Priority Development (ELD), and Coordinated Development (CD).

This research aims to provide three key contributions: (1) methodological,
by demonstrating the value of the MOP-FLUS integration for balancing
economic and ecological objectives; (2) empirical, by revealing the
distinctive spatial signatures of LER in a typical plain city; and (3) practical,
by offering actionable insights for spatial planning and ecological

stabilization in Chengdu and similar urban contexts worldwide.

II. Materials and Methods

1, Study Area

The research is situated in the western Sichuan Basin of central Sichuan
Province, China (102°54’-104°53'E, 30°05’-31°26'N). The region extends 192 km
east-west and 166 km north-south, with a total area of 1,433,500 hm?.
Administratively, it's composed of a total of 20 divisions: 12 districts, 3
counties, and 5 county-level cities (Fig. 1). Located at the convergence zone

of the western Sichuan Basin and the eastern foothills of the Qinghai-



Figure 1

use types in Chengdu
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Tibet Plateau, the study area features complex topography bordered by Ya’
an and Aba to the west, and neighboring Deyang, Ziyang, and Meishan
to the east. The region exhibits a distinct west-high-east-low topographic
pattern. Significant altitudinal variation across the study area has formed a
landform where plains, hills, and mountains each constitute approximately
one-third of the territory. The climate is characterized as a subtropical
monsoon type with clear seasonal variations and warm, humid conditions.
The area’s climate is characterized by a mean annual temperature of 16.7C
and annual precipitation of 734.8 mm~1142.3 mm, with evenly distributed
rainfall moderately concentrated during the summer Meiyu season. The
Min River, revered as the cradle of civilization in the Chengdu Plain, flows
through the urban area and plays a vital role in sustaining the urban water
supply and ecosystem conservation. The Dujiangyan Irrigation System,
an ancient yet highly effective hydraulic engineering project, continues to
provide water resources for Chengdu and surrounding regions, holding
significant historical and cultural value. Demographically and economically,
Chengdu registered a permanent population of 15.982 million with an
urbanization rate of 80.5%. As of early 2021, the city’s gross domestic
product reached 1,991.698 billion yuan, with per capita GDP increasing

by 6.7% year-on-year, while the tertiary sector contributed 69.4% to the
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economic output. In terms of transportation and resource endowment,
Chengdu possesses a comprehensive transportation network encompassing
railways, highways, and aviation infrastructure, along with abundant natural
gas reserves. Leveraging these advantages in economy, transportation, and
resources, Chengdu has progressively evolved into a strategic growth hub

in southwestern China and a nationally designated central megacity.

2. Data Sources

Informed by the identified characteristics from the research region, the
data employed in this research primarily include land use datasets, natural
condition parameters, and socioeconomic statistics. Detailed sources for
all datasets are provided in Table 1. Physical and socio-economic factors
primarily act as primary drivers of land use change for extracting transition
rules in the FLUS model. Guided by the actual context of the research
region and data accessibility, 14 influencing factors were selected, including
distance to roads, distance to railways, distance to water area, annual
precipitation, DEM, population density, GDP per unit area, and nighttime
light index, among others. Transportation and water area data were
processed by converting vector data into 30m X 30m raster maps of driving
factors. To enhance simulation accuracy and generate more realistic land
use predictions, restricted zones were designated, including water-protected
areas and nature reserves. All spatial datasets were uniformly processed
in ArcGIS 10.2, undergoing resampling to a 30mXx30m resolution, and all
spatial data were uniformly projected using the WGS84 UTM Zone 48N

coordinate framework.



Table 1
Data Type
Land Use Data

Data sources

Data Name

Land Cover Data
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Data Source

https://www.resdc.cn/

Natural
Condition Data

NDVI

https://www.resdc.cn/

Soil Type

https://www.resdc.cn/

Annual Average Temperature

https://www.resdc.cn/

Annual Average Precipitation

https://www.resdc.cn/

DEM https://search.earthdata.nasa.gov/
Slope https://search.earthdata.nasa.gov/
Aspect https://search.earthdata.nasa.gov/

Socio-economic
Data

Population Density

https://www.resdc.cn/

GDP Per Unit Area

https://www.resdc.cn/

Nighttime Light Data

https://www.resdc.cn/

Distance to District/Town

Centers

https://www.webmap.cn/

Distance to Roads

https://www.openstreetmap.org/

Distance to Railways

https://www.openstreetmap.org/

Distance to Water Area (Rivers)

https://www.openstreetmap.org/

Panel Data Economic Data for Agriculture, |{Chengdu Statistical Yearbook)
Forestry, and Fishing
Economic Data for the Three {Chengdu Statistical Yearbook), {National
Major Grain Crops Compilation of Cost-Benefit Data of
Agricultural Products)
3. FLUS Model

The FLUS model employed in this study serves as an effective simulation

tool for predicting future land use scenarios. By integrating Artificial

Neural Network (ANN), System Dynamics (sD), and Cellular Automata (cA)

technologies, it can address competitive land use transitions Process under

multiple driving factors, thereby providing methodological support for

subsequent simulation analyses. The model informed by regional land


https://search.earthdata.nasa.gov/
https://www.webmap.cn/
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utilization change regular and natural ecological development effects.
It utilizes ANN to analyze various driving factors and yield suitability
likelihood for different land utilization types. The SD module quantifies
land utilization demands from a macro-perspective by measuring the
influences of both socioeconomic development and natural conditions,
while the CA module, through a dynamic adaptive inertial competition
mechanism, addresses the spatial competition among multiple land-use
types within complex systems. By configuring land use transition matrices
and neighborhood factor weights, the FLUS model achieves high-precision
spatiotemporal distribution simulations, with results closely aligned with

actual land use change processes.

4 MOP Model

Considering the different emphases in urban development goals, four
scenarios were established to predict the Spatial Configuration of Land
Use in 2040: ND, END, ELD, and CD. The ND scenario simulates urban
expansion under current policy frameworks without imposing additional
constraints. This scenario requires identifying the optimal simulation
model and time interval scale to maximize predictive accuracy, thereby
establishing the baseline for calculating land use areas across different
scenarios. For other scenario configurations, each must be paired with
corresponding land use structure optimization schemes (Table 2), while
incorporating measurements of both economic and ecological benefits.
The END scenario determines the areal composition for six land use
types by applying the principle of economic benefit maximization. The
ELD scenario determines the areal composition for six land use types by
applying the principle of ecological benefit maximization. The CD scenario

represents a sustainable approach that harmonizes immediate advantages



Table 2 Constraints (hm?)

Constraint Type

Constraint Conditions
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Constraint Definition

Constraint on
Total Land
Area

Constraint
on Cultivated
Land Area

Constraint on
Wood Land
Area X

Constraint on  372710<<0.46X,+X,+0.49X;

Forest Cover

Constraint on
Landscape
Diversity

Constraint on
Water Area

Constraint on
Construction
Land

Non-negative
constraint

on decision
variables

6
A= ZXI
i=1

593584.31<X;,<791737.7

251516.33<X,<325199.37

54473<X5+ X
24623.61<<Xy

229712.53<X5<342798.89

X, =0, i=1~6

The total areas of the six land utilization types equals
the combined area of Chengdu, 1433500.

Historical trend analysis indicates a persistent decrease
in cultivated land area, with the projected change
expected to be less pronounced than that observed in
2020. The lower bound was set at 20% below the ND
scenario forecast, while the 2020 actual value served
as the upper bound for regional projections.

Historical data show a declining trend in total wood
land area, with future changes expected to be more
modest than those observed in 2020. The lower
bound was defined as 20% below the ND scenario
projection, while the 2020 actual value served as the
upper bound for regional estimates.

According to Chengdu'’s "Territorial Spatial Plan
(2020-2035)", the forest coverage rate must reach at
least 26% by 2035. This forest coverage constraint
represents a crucial requirement for the Harmonious
Sustainable Development. Within the land system,
only cultivated land, wood land, and grass land
qualify for meeting this constraint, with corresponding
coefficients of 0.46, 1.00, and 0.49 respectively for
calculating their contributions to forest coverage.

To preserve landscape diversity and accommodate
urban expansion needs, as grass land and unused
land are frequently converted for agricultural or urban
development, their combined area shall be maintained
at no less than 3.84% of the total land area by 2035.

Historical trend analysis indicates a continuous
expansion of water area, with future changes
expected to exceed the 2020 level. The actual 2020
value was set as the regional lower bound for
projections.

Historical trend analysis reveals a consistent upward
trajectory in construction land area, with projected
future changes expected to exceed the 2020 level. The
upper bound was established at 20% above the ND
scenario forecast, while the actual 2020 value serves
as the lower bound for regional projections.

The non-negative nature of land area dictates that all
corresponding decision variables in the study must
assume values greater than or equal to zero.
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with sustainable long-term gains, achieving equilibrium between economic
and ecological objectives through optimized land use allocation. This
scenario is realized by adjusting the areal composition of different land use

categories, enabling comparative analysis across multiple scenarios.

1) Economic Benefit Objective Function

Leveraging data on the economic productivity of different land types
(2000-2020), the economic efficiency coefficients for Chengdu in 2035 were
projected using the GM(1,1) model, and the corresponding economic
efficiency objective function was formulated. The economic productivity
of various land categories within Chengdu was assigned corresponding
industrial production values: cultivated land used planting industry data,
wood land adopted forestry outputs, grass land utilized animal husbandry
figures, water area employed fishery production data, while construction
land incorporated the gross productivity of the secondary sector and tertiary
Sector (Tang et al, 2022). Given the minimal and fragmented distribution
of unused land in Chengdu, its economic benefits were excluded from the

analysis.

maxf;(x)=19.674x,+2.144x,+93.385x3+27.504x,+1749.315x5+0x¢ (@))]

2) Ecological Benefit Objective Function

The core manifestation of ecological benefits lies in ecosystem service
value (Esv), encompassing multiple categories such as regulatory, supportive,
and cultural services. Costanza et al. (1997) provided a seminal reference
for subsequent ecological benefit assessments by quantifying 17 ecosystem
functions across 16 ecosystem types. Xie Gaodi (2015) subsequently adapted
this classification system to align with China’s specific ecological context.

Multiple methodologies are currently available for assessing ESV, including
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the physical quantity method, energy value analysis, shadow engineering
approach, and travel cost method. This study employed the area-equivalent
correction method to calculate ESV and formulate the ecological benefit
objective function. The ESV was appropriately calibrated using the ratio
of grain output per unit area between Sichuan Province and the national
average, followed by the application of the GM(,1) model to forecast

Chengdu’s ecological benefit coefficients for 2035.

max/5(x)=2.4872x+13.2562x,+10.6646203+67.5091x,+0.45x5+0.1259x  (2)

To verify the credibility of the adjusted economic efficiency coefficients, a
sensitivity index was applied to examine the impact of coefficient variations
for specific land types on the total ESV. By increasing and decreasing
the ecological benefit coefficient of individual land types by 50%, the
responsiveness of the total ESV to such parameter adjustments was
evaluated. By adjusting the ecological benefit coefficients of various land
types, the responsive sensitivity indices of different land categories toward
ecological benefits can be calculated, with specific results presented in Table
3. All sensitivity indices recorded during the study period remained below
1, confirming the reliability of the coefficient adjustments and effectively

ensuring the accuracy of land ecological benefit assessments. Among all

Table 3 Sensitivity index of different land use types

Year  Cultivated land Wood land  Grassland  Water area  Construction land ~ Unused land
2000 0.2637 0.4866 0.0785 0.1711 0.0065 0.0001
2005 0.2569 0.4921 0.0792 0.1718 0.0080 0.0001
2010 0.2418 0.5063 0.0738 0.1781 0.0096 0.0001
2015 0.2381 0.5088 0.0743 0.1788 0.0108 0.0001
2020 0.2296 0.5025 0.0741 0.1938 0.0121 0.0001
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land types, cultivated land and wood land demonstrated relatively higher
sensitivity, indicating their more substantial influence on overall ecological

benefit evaluation.

3) Objective Function for Balancing Economic and Ecological Benefits

By assigning different weights to ecological and economic benefits, this
objective function enables the calculation of corresponding ecological and
economic benefits of land use under varying weight allocations. Drawing
on existing literature and applying the Pareto optimality strategy, the
balancing act between ecological and economic objectives was analyzed
by calculating the rate of ecological gain achieved per 1% reduction in
economic benefits (i.e., the eco-economic conversion rate). This analysis ultimately
determined that equal weighting of 0.5 for both dimensions yields the

optimal land use structure.

max{/;(x), /0} ©)

In the formula, x;, X,, X3, X4, X5, X¢ represent cultivated land, wood land,
grass land, water area, construction land, and unused land, respectively,

measured in hectares (hm?.

5. LER assess

1) Delineation of LER assess Units

When utilizing grid cells as assessment units and considering regional
characteristics, the optimal grid size is typically determined as 2-5 times
the average patch area within the region, based on principles of landscape
ecology (Karimian et al., 2022). To further refine the grid dimensions, this study

employed GS+ software to conduct semi-variogram fitting for the 2020 LER
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Table 4 LER index semi-variance function model fitting results at different scales in 2020

Scale co C+C0 C/(C+CO) A/m R? RSS

2km 223x10" | 4.48x10™ 0.501 46600 0.950 2.54%107
3km 147x10" | 3.47x10" 0.575 44600 0.919 3.90% 107
4km 1.36x10% | 355x10" 0.617 47600 0.895 6.44x10”
Skm 1.03x10% | 3.07x10" 0.663 44500 0.936 3.05%x10?

index at different spatial scales. The most suitable grid size was selected
with reference to the coefficient of determination (% and residual sum of
squares (rRsS) derived from the model fitting. When the fitting results show
a high R? value coupled with a small residual RSS, it indicates superior
fitting performance at the corresponding grid scale. According to the fitting
outcomes presented in Table 4, the research area is partitioned into 2km
x 2km LER grid cells using ArcGIS, generating a total of 3,825 assessment
units. LER values for each unit were quantified using Fragstats 4.2 software.
Subsequently, the geometric centroids of all risk units served as input

parameters for the Kriging interpolation model.

2) Construction of the LER Index Model

Informed by existing studies and considering the actual conditions
of Chengdu, a LER assessment model was constructed by integrating
landscape type area proportion and landscape loss degree index. The
landscape loss degree index is derived from the integration of the
landscape vulnerability index and the landscape disturbance index. As
a quantitative indicator, the LER index accurately characterizes the risk
status of Chengdu’s landscape ecosystem. With reference to existing LER
classification methods and consideration of Chengdu’s actual characteristics,
the LER index was classified into five distinct risk tiers—low, relatively low,
moderate, relatively high, and high—through the application of the natural

breaks (Jenks) classification algorithm. This approach aims to precisely
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represent the spatial pattern of LER, which is mathematically represented as:

m
Aki

A
=1k

ERI= R; 4

In the formula, ERI, represents the LER index of landscape type i in
evaluation grid cell k (where k = 1, 2, 3, .., N); m denotes the total count of
landscape types; A, denotes the aggregate area of assessment grid cell k;
Ay, represents the area of landscape type i within assessment grid cell k; R;
refers to the landscape loss degree index corresponding to landscape type
i. A higher value of this index indicates a greater LER tier in the research

area, while a lower value corresponds to reduced ecological risk.

6. Spatial Autocorrelation Analysis

Spatial autocorrelation measures the clustering patterns and dispersion
degree of variables, comprising both global Moran's I and local Moran’s 1
indices. The degree of geographical association of attributes within the
study area was assessed using Global Moran’s 1. The statistic ranges from
-1 to 1. Positive values indicate positive spatial autocorrelation, with higher
values reflecting more pronounced spatial clustering. Conversely, negative
values demonstrate dispersed spatial patterns. A value of 0 suggests the
absence of significant spatial autocorrelation, representing a unpatterned
geographical distribution. Local Moran’s 1 is applied to identify how specific
attributes cluster within limited spatial regions. A negative local Moran’s 1
indicates negative spatial association, identifying areas where high and
low values are adjacent between a spatial unit and its neighbors, reflecting
significant spatial dissimilarity. Conversely, a positive local Moran’s 1

indicates positive spatial autocorrelation, identifying areas of high-value or

367
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low-value clustering, demonstrating low spatial variation among neighboring

grid cells, and confirming the presence of spatial aggregation.

III. Results

1. Analysis of LER Dynamics

1) Analysis of Spatiotemporal Changes in LER

Between 2000 and 2020, Chengdu exhibited a notable trend of structural
optimization in its LER. The average LER index decreased consistently from
0.0189 to 0.0171, indicating steady improvement in the overall ecological
condition. The core driver of this improvement lies in the fundamental
transformation of the risk level structure (Fig. 2). In 2000, the LER pattern was
dominated by relatively high-risk levels, with nearly half the area classified
as higher-risk. By 2020, the risk structure had shifted to one where medium-
risk areas became predominant, forming a more stable, low-risk “spindle-
shaped” structure characterized by a large middle and small extremes.
Specifically, the area of low and medium-risk zones continued to expand,
increasing by approximately 25%, while the area of high and higher-risk
zones contracted significantly, decreasing by nearly 30%.

This structural transformation did not occur at a uniform pace. The
most dramatic adjustments occurred between 2000 and 2005, primarily
manifested as the expansion of medium-risk areas and the reduction of
high-risk areas. Subsequently, the focus of risk level transition gradually
shifted downward. By the 2015-2020 period, the significant contraction
of high and higher-risk zones became the dominant force driving the
overall risk “downward,” signifying that the effects of Chengdu’s ecological

management efforts were most significant in the areas of highest risk.
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Changes in LER by Level /%
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Figure 2 Change in LER in Chengdu

2) Analysis of LER Transition Changes

The transition matrix of LER grades (Fig. 3) corroborates the afore-
mentioned overall risk reduction trend from a process-oriented perspective
and reveals its underlying transformation mechanisms. Between 2000 and
2020, the evolution of LER in Chengdu demonstrated a high degree of
orderliness and improvement-oriented transition.

Orderliness is reflected in the fact that risk grade transitions primarily
occurred between adjacent levels, indicating that the evolution of LER is
a relatively stable and gradual process rather than one characterized by
abrupt, leapfrog changes.

Improvement-oriented transition is manifested as a distinct “downgrading”-
dominated characteristic. The conversion from higher to lower risk zones
accounted for an overwhelming proportion of the total transition area,
constituting the core driver of optimization in the overall risk pattern. In
contrast, reverse “upgrading” transitions were negligible (only 2.28%), further
confirming the robustness of this improvement trend. Although a notable
proportion of non-adjacent leapfrog transitions occurred in low-risk areas
during 2005-2010, suggesting possible localized disturbances during this
period, this episode did not alter the overarching two-decade trend of

sustained and steady risk reduction.

369
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2. Spatial Autocorrelation Analysis of LER

1) Global Spatial Autocorrelation Analysis

Global spatial autocorrelation analysis confirms a highly significant
positive spatial correlation pattern in Chengdu’s LER between 2000 and
2020. The global Moran’s T indices for each year were accompanied by
exceptionally high Z-scores and significance levels of P < 0.001 (Table 5),
indicating that the spatially clustered patterns of LER were non-random and
highly statistically significant.

However, the intensity of this spatial clustering demonstrates a clear and
gradual weakening trend. Moran’s 1 index decreased significantly from
0.654 in 2000 to 0.495 in 2020. This persistent decline suggests a weakening
of the LER “club” effect in Chengdu, with its spatial distribution evolving
from clearly clustered high-risk/low-risk blocks in the early period towards
a more mixed and homogeneous pattern in later stages. This loosening

of spatial dependency is associated with driving factors such as the
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Table 5 Global Moran’s | Analysis of LER

Year Moran’s | z P

2000 0.654 79.365 0.001
2005 0.640 77.679 0.001
2010 0.517 62.722 0.001
2015 0.513 63.240 0.001
2020 0.495 60.238 0.001

diversification of land use patterns resulting from urbanization and the

decentralized implementation of ecological policies.

2) Local Spatial Autocorrelation Analysis

LISA cluster analysis (Fig. 4) reveals that the local spatial correlation of LER
in Chengdu presents a significant “bipolar clustering” pattern, dominated by
“High-High” and “Low-Low” clusters, while transitional outliers (“Low-High”,
“High-Low” clusters) account for an extremely low proportion (approximately 1%),
indicating that high-risk and low-risk areas are internally highly continuous
yet lack buffers between each other. The “High-High” clusters, acting as key
risk sources, are distributed in continuous patches, showing a fluctuating
downward trend in coverage rate, primarily located in water bodies and

cultivated areas susceptible to human disturbance, with poor landscape

(a) 2000

(b) 2005 & A (¢) 2010
P

,,,,,

[

Figure 4 LISA Cluster
Analysis of LER
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stability. The “Low-Low” clusters form the core ecological barriers, con-
centrated in the central-western part, with their coverage rate decreasing
from 21.49% to 19.03%, suggesting that the superior ecological base is
under pressure. The scarcity of outliers further increases the potential risk
of confrontation between high and low-risk zones. Therefore, ecological
risk management should adhere to the strategy of “consolidating barriers
and treating sources”, focusing on targeted governance in high-risk cluster
areas while strictly protecting the western low-risk cluster areas to block

their spatial radiation effects.

3. Analysis of Drives of LER

1) Factor Detection

Geodetector analysis indicates that natural factors are the dominant
drivers of the spatial heterogeneity of LER in Chengdu. In the single-factor
detection, the p-values of all driving factors passed the significance test
(p=0.001) (Table 6). Mean annual temperature was the most critical factor
affecting risk heterogeneity (q=0.284), followed by DEM (q=0.275), NDVI
(g=0.238), and slope (q=0.198). In contrast, socioeconomic and accessibility
factors exhibited weaker explanatory power (q<0.1), indicating that the LER

pattern is primarily constrained by the underlying natural conditions.

2) Interfactor Interactions Analysis

This dominant pattern exhibited dynamic evolutionary characteristics
from 2000 to 2020 (Fig. 5). In 2000, it was primarily led by NDVI and mean
annual temperature. By 2020, the influence of DEM and mean annual
temperature had significantly strengthened, with their explanatory powers
both exceeding 0.45, reflecting that the constraining effects of topography

and climate on the landscape pattern have become increasingly prominent
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Table 6  Analysis of LER Drivers in Chengdu
Factor Layer Indicator Layer No. 2000 2005 2010 2015 2020 Rank
Natural DEM X1 | 0.1389 | 0.1469 | 0.2022 | 0.4053 | 0.4793 | 2
Factors Slope X2 | 0.0759 | 0.1044 | 0.127 | 0.3135 | 0.3696 | 4
Aspect X3 | 0.0055 | 0.0061 | 0.0081 | 0.0091 | 0.0143 | 14
Soil Type X4 | 0.0258 | 0.0226 | 0.0559 | 0.1826 | 0.2203 | 8
NDVI X5 | 0.2052 | 0.2067 | 0.2058 | 0.2747 | 0.2953 | 3
Annual Average Precipitation | X6 | 0.0397 | 0.0543 | 0.0551 | 0.1699 | 0.1892 7
Annual Average Temperature | X7 | 0.1881 | 0.2286 | 0.1441 | 0.3988 | 0.4611 | 1
Regional Distance to District/ X8 [ 0.0382 | 0.041 | 0.0415 | 0.1051 | 0.1355 | 11
Accessibility | Town Centers
Distance to Roads X9 | 0.0221 | 0.0234 | 0.0212 | 0.0834 | 0.1044 | 12
Distance to Railways X101 0.0626 | 0.0795 | 0.094 | 0.2328 | 0.2778 | 5
Distance to Water Area X11| 0.0075 | 0.0166 | 0.0191 | 0.0723 | 0.1051 | 13
Socio- Population Density X121 0.0955 | 0.0709 | 0.0613 | 0.0888 | 0.1201 | 10
economic |\Gpp per Unit Area X13| 0.1066 | 0.0791 | 0.0964 | 0.0543 | 0.1213 | 9
Factors 1 ighttime Light Index X14] 0.1003 | 009 |0.0876| 0.089 | 0.1535
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Figure 5  Interaction results of driving factors for LER in Chengdu
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alongside the intensification of human activities. Interaction detection
further revealed that all factor pairs exhibited a two-factor enhancement
effect, with significant interactions among natural factors. The interactive
explanatory power of combinations like DEM & mean annual temperature
and DEM & NDVI exceeded 50% in 2020, demonstrating that LER results
from the nonlinear coupling of multiple natural and socioeconomic
elements. This finding emphasizes that future ecological risk management
should focus on the synergistic enhancement effects produced by the

combination of key natural factors in different geographical contexts.

4. Multi-Scenario Land Use Simulation and Prediction

1) Accuracy Validation Multi-Scenario Land Use Models

To ensure the reliability of future scenario simulations, this study used
the actual land use data from 2020 as a benchmark and systematically
compared the simulation performance under different parameters and
data configurations through the control variable method, aiming to select
the most robust simulation path for the 2035 prediction. Model accuracy
was jointly evaluated by the overall accuracy and the Kappa coefficient.
Among these, the Kappa coefficient is regarded as a superior indicator for
measuring the consistency between simulation results and real data because
it can effectively eliminate the interference of random classification; its

value is higher, indicating the model’s simulation performance is superior.

(1) Comparing the Simulation Accuracy of Two Models

To enhance the improvement of simulation results, two models - both
the PLUS and FLUS models - were selected to simulate the land use
configuration of 2020 (Figure 6). Model accuracy validation showed that the

evaluation results showed the PLUS model produced a Kappa index of
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Figure 6 Variations in model accuracy in Chengdu

81% with 88.3% accuracy; the FLUS model recorded significantly higher
results at 87% Kappa and 92% accuracy. The comparative results indicate
that the FLUS model demonstrates superior accuracy in simulating land use

evolution.

(2) Comparing Simulation Accuracy Across Different Temporal Spans

To improve the accuracy of the simulation results, two temporal spans
- a ten-year interval (2010-2020) and a five-year interval (2015-2020) - were
selected to simulate the land use pattern of 2020 (Fig. 7). Model accuracy
validation showed that the simulation using the five-year interval produced
a Kappa index of 86.98% with 92% accuracy, while the simulation using the
ten-year interval produced a Kappa index of 79.72% with87.51%accuracy.
The comparative results indicate that shorter temporal spans demonstrate

superior accuracy in simulating land use evolution.

(a) Ten Year (b) Five Year (c) Accuracy Difference

Cultivated land
I Wood land

Grass land

Cultivated land,
B woodland %

Grass land

Water area ] 4 Water area o O
[ Construction land v —— I Construction fand. 577w m—kor [ Different
N Unused land N Unused land Same

Figure 7 Accuracy differences across various time spans in Chengdu
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Figure 8 Differences in prediction method accuracy in Chengdu

(3) Comparing the Simulation Accuracy of Different Quantity Prediction
Methods

To enhance the accuracy of the simulation results, two quantity prediction
methods - both the Markov and Linear Regression models - were selected
to simulate the land use pattern of 2020 (Fig. 8). Model accuracy validation
showed that simulation using the Markov model produced a Kappa
index of 81.51% with 88.63% accuracy, while simulation using the Linear
Regression model produced a Kappa index of 81.39% with88.55%accuracy.
The comparative results indicate that the Markov model demonstrates

superior accuracy in simulating land use evolution.

(4) Accuracy Validation of the 2020 Projections
The 2020 land use configuration of Chengdu was simulated using land

use/cover data from 2015-2020 and 14 corresponding drives. The simulated

() Reality

(b) Forecast N (¢) Accuracy Difference

-

0 s 0 .
I Construction land ™"~ - — [ Different
I Unused land Same

Figure 9  Accuracy variations in Chengdu
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outputs were next spatially compared with the actual distribution (Fig. 9).
The FLUS model demonstrated high simulation accuracy, with most land
type simulation accuracies exceeding 90%. Only the accuracies for water
bodies and construction land were slightly lower, at 85.56% and 82.92%,

respectively.

2) Multi-Scenario Landscape Type Change Analysis for 2035

The multi-scenario land use simulation results (Table 7, Fig. 10) profoundly
reveal the potential pathways of Chengdu’s landscape pattern in 2035 under
different policy orientations. The macro-scale pattern of the “Northeastern
Ecological Conservation Area” and the “Central-Western Urban-Rural
Development Area” remains stable across all scenarios, but their evolution
patterns and ecological impacts are fundamentally different.

Both the ND and END scenarios predict the continued squeezing of
ecological space by high-intensity development. Under the ND scenario,
the disorderly expansion of construction land directly encroaches on a
large amount of high-quality cultivated land, and further forces marginal
woodland to be converted into cultivated land, showing the inertial pressure
of sprawling development. The END scenario pushes this development
intensity to the extreme, with the area of cultivated land sharply decreasing
by 8%. The rate and scale of this loss far exceed those in the ND scenario,
clearly revealing the enormous ecological cost inevitably brought by
solely pursuing economic growth. In contrast, the ELD and CD scenarios
demonstrate the optimizing effect of effective policy intervention on
spatial order. The ELD scenario, by strictly restricting the expansion of
construction land, maximally preserves the scale and distribution of
ecological lands such as woodland and grassland, proving that controlling
development intensity at the source is key to maintaining the ecological

base. The CD scenario reflects a more refined regulatory logic. Although



OtAlof2| 7 M153 M3=2(S3 35%), 2025

its direction of change is similar to the ND scenario, the magnitude of
change for all key land types (e.g., cultivated land loss, construction land expansion)
is effectively curbed. This indicates that, while acknowledging development
needs, it is entirely possible to significantly slow the degradation rate of
ecological land and rebalance the relationship between development and
protection through strong cultivated land protection and construction land
control.

In summary, the simulations clearly present the core trade-offs under
different pathways: the END scenario centrally reflects the spatial demands
of economic development, at the cost of rapid cultivated land loss and
ecological squeezing; the ELD scenario is the most thorough in ecological
preservation, imposing the strictest limits on construction demand; the CD
scenario finds a feasible path that balances economy and ecology, whose
outcomes are highly aligned with the orientation of regional sustainable
development, providing crucial scientific evidence for decision-makers.

Unused land did not undergo significant changes in any scenario due to its

Table 7 Area and changes of landscape types under multi-scenario in Chengdu (km, %)

Cultivated Construction
land Wood land  Grass land ~ Water area land Unused land
2020 |area 7917.70 3252.40 595.30 245.59 2297.58 20.43
Percentage 55.23 22.69 4.15 1.71 16.03 0.19
ND |area 7493.02 3170.57 596.68 284.38 2763.92 206.42
Percentage 52.27 2212 4.16 1.98 19.28 0.18
END |area 7377.07 3389.19 625.01 27291 2043.43 27.38
Percentage 51.46 23.64 4.36 1.90 18.44 0.19
ELD |area 7535.73 3430.18 615.16 306.87 2420.59 26.48
Percentage 52.57 23.93 4.29 2.14 16.89 0.18
CD |area 7466.10 3239.99 606.98 279.44 2716.42 20.07
Percentage 52.08 22.60 4.23 1.95 18.95 0.18
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Figure 10  Spatial distribution of landscape types under multi-scenarios in Chengdu

low baseline proportion.

3) Analysis of Multi-Scenario LER Changes in 2035

The simulation of future LER shows that the spatial pattern of risk in

Chengdu in 2035 maintains a high degree of inheritance from the historical

distribution under different scenarios (Figure 11, Figure 12). However, the

average risk level varies depending on policy choices, showing subtle yet
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Figure 11

Spatial distribution of LER under multi-scenarios in Chengdu

379



ofAlotz| s M153 HM8S(EH 355), 2025

Changes in LER by Level /%

Figure 12 LER in Chengdu:
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Scenarios

critical differences. The average LER indices for all four scenarios remain
above 0.020, belonging to the medium-risk category, but this does not
mean that policies are ineffective.

Based on the simulation of future LER, we conducted a comparative
analysis of the risk level pattern in Chengdu for the year 2035 under four
development scenarios (Fig. 13). The results show that different policy
pathways will have distinct impacts on regional ecological security.

Under the ND scenario, the LER pattern remains relatively stable, with
limited changes in the area of each risk level. However, the risk structure
shows a slight “upgrading trend”, specifically manifested as the transfor-
mation of low and relatively low-risk areas into adjacent higher levels,
resulting in a significant increase of 783.17 km* in high-risk areas. This
indicates that even by maintaining the current development trajectory,
regional ecological pressure will continue to accumulate. While no
fundamental deterioration of the risk pattern occurs, there is also a lack of
momentum for improvement.

Under the END scenario, the risk pattern undergoes drastic restructuring.
Large-scale transfers between levels towards higher risk levels occur,
ultimately causing the high-risk area to surge to 1660.86 km? more than

doubling compared to the ND scenario. The significant diffusion and
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multi-scenarios in Chengdu

intensification of risk clearly warn that an economic development model
achieved at the expense of ecology will pose a serious threat to regional
ecological security. In contrast, the ELD scenario exhibits an ideal “risk
convergence” pattern. Risk levels show a systematic, bidirectional trend
of “converging towards the middle”, forming a complete hierarchical
optimization pathway. The result is a substantial reduction of 1009.29 km?
in the high-risk area, accompanied by a corresponding expansion of the
medium-risk area. This pattern eliminates extremely high risk and avoids
excessive risk aggregation, signifying an ecosystem in a controllable and
benign development state. The risk pattern under the CD scenario is
the most complex, with its risk level situated between the ND and ELD
scenarios. This scenario exhibits the coexistence of high-risk area expansion
and relatively low-risk area reduction, indicating that its regulatory
mechanism has not yet fully contained the localized deterioration of risk.
This result suggests that achieving coordinated development requires more
refined spatial management strategies, rather than a simple compromise.
Opverall, the simulation results from the different scenarios clearly reveal

the causal relationship between policy choices and ecological consequences,

Figure 13  Transition of LER under
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providing clear scientific evidence for regional sustainable development

decision-making.

IV. Discussion

1. Scenario-Based Evolution of LER

The different scenarios’ simulation results reveal significant differences in
LER patterns in Chengdu under different development policy orientations.
Under both the ND and END scenarios, the loss of cultivated land is a direct
consequence of the haphazard spatial sprawl of construction land and
ecological land, driving an increase in the mean LER index and triggering
intense transitions toward higher risk levels. The expansion of high-risk
areas demonstrates a clear trend of risk structure shifting toward higher
grades. Without effective spatial regulation, the current development model
will result in continued decline in ecosystem stability and further intensification
of LER.

Under the ELD Scenario, the stringent control of construction land ex-
pansion and effective maintenance of ecological land scale have resulted in
a marked contraction of high-risk zones, confirming that robust ecological
protection is the most effective approach to enhancing regional ecological
security. In contrast, the simulation results of the CD Scenario fall short of
expectations, with the overall risk level situated between the ND and ELD
scenarios, and a substantial expansion of high-risk areas still observed.
This indicates that, under current development conditions, if coordination
relies solely on macro-level balanced regulation without rigid constraints
on key ecological elements, the diffuse nature of objectives in so-called

“coordinated development” proves difficult to effectively curb ecological
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degradation and fails to achieve substantial improvement in ecological

environmental quality.

2. Recommendations for Future Development

Based on the spatiotemporal evolution, driving mechanisms, and multi-
scenario simulation results of LER, the following recommendations are
proposed for the sustainable development of Chengdu:

First, Implement Differentiated Ecological Management Strategies.
Delineate key control zones based on spatial autocorrelation analysis,
specifically targeting “high-high” risk clusters in ecologically sensitive zones
like water areas and cultivated land ecotones. In these zones, establish
ecological buffer strips and promote agroecological practices to mitigate the
risk of radiation effects. For medium- to high-risk cultivated areas, strictly
enforce cropland protection policies and advance the development of high-
standard cultivated land to maintain the stability of agricultural ecosystems.

Second, Construct a Comprehensive Ecological Security Pattern. Stringently
protect the ecological barrier functions of the western “low-low” clusters by
enhancing forest conservation and biodiversity maintenance. Advance the
“Park City” initiative by improving ecological corridor networks to enhance
intra-urban ecological connectivity, and establish a coordinated urban-rural
ecological security system.

Third, establish a Long-term Monitoring and Planning-Oriented Mechanism.
Develop a dynamic LER monitoring and early-warning system, with a
specific focus on areas experiencing anomalous risk level transitions, to
facilitate a shift from reactive remediation to proactive regulation. Ensure
that territorial spatial planning fully accounts for the interactive effects of
natural and socio-economic factors. By implementing scientifically informed

spatial regulations, composite ecological risks can be mitigated, thereby
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safeguarding the sustainable development of regional ecological security.

3. Limitations and Future Directions

The study has several limitations and constraints.

First, the landscape vulnerability weighting based on expert experience
involves a degree of subjectivity. To test the robustness of the conclusions,
the vulnerability index of construction land was increased from 1 to
6, substantially raising its landscape loss degree from 0.0064 to 0.2058.
However, the sensitivity analysis results show that while the total area of
high-risk regions and the significance of the spatial pattern changed, the
two core conclusions—that the ELD scenario is the most effective path
for risk control and that the CD scenario faces management challenges—
remain valid. This demonstrates that the main findings of this study possess
a certain robustness to the weight assignments. However, adopting objective
weighting methods based on ecosystem service flows is a direction for
improving assessment accuracy in future research.

Second, the choice of drivers was governed by the availability of data,
leading to the exclusion of several potential determinants, including
governmental policy interventions, socioeconomic fluctuations, and natural
disaster events. This analysis was limited to fourteen quantifiable factors,
potentially creating deviations between the projected scenarios and real-
world ecological outcomes.

Third, the 30-meter resolution land data used in this study, while suitable
for regional-scale analysis, struggles to precisely capture fine-grained
ecological elements within the city, such as pocket parks, small green
belts, and narrow river corridors. This leads to a systematic deviation in the
assessment of LER within highly fragmented urban built-up areas, making

it impossible to accurately quantify the actual contribution of fine-scale
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ecological units in reducing local risk.

Fourth, in conducting the LER assessment, the study area was divided
into 2 kmx2 km assessment units. The Kriging interpolation process for
areas with irregular edges or where assessment center points fell outside
the study area may have introduced some degree of error. Future studies
could benefit from optimizing the spatial unit division scheme or employing
alternative interpolation methods to minimize such potential inaccuracies.

Fifth, this study reveals a key policy dilemma. Although the MOP model
indicates that a 0.5:0.5 weighting is theoretically the Pareto-optimal solution
with the highest eco-economic conversion efficiency, the CD scenario
simulated based on this, in practice, failed to effectively curb the expansion
of high-risk areas. This “coordination failure” phenomenon profoundly
reveals the gap between theoretical optimum and spatial implementation.
In plain cities with significant ecological risk heterogeneity, homogeneous
weight allocation cannot form effective constraints in critical locations.
When regional development pressure approaches the ecological critical
point, any “coordination” scheme lacking rigid spatial bottom lines as a
precondition struggles to counteract the powerful inertia of economic
development. Therefore, achieving coordinated development must go
beyond macro-level weight balancing. It is necessary to transform identified
key areas, such as “High-High” risk zones, into supplementary spatial rules
that must be strictly enforced as peripheral extensions of the ecological
protection redline. Only through precise, “one policy per parcel” manage-

ment can the goals be achieved in practice.

V. Conclusions

This study systematically analyzed the evolution patterns of LER in
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Chengdu from 2000 to 2035, yielding the following core conclusions:

First, in terms of temporal evolution, the LER in Chengdu exhibited
structural improvement during 2000-2020. The average risk index conti-
nuously decreased, and the risk pattern achieved an optimized transfor-
mation from being dominated by relatively high-risk levels to being
primarily composed of medium-risk levels. The transfer of risk levels was
dominated by the “downgrading” from higher to lower risk levels, clearly
revealing a positive development trend in the regional landscape ecological
environment.

Second, in terms of spatial pattern, the risk distribution demonstrated
stable spatial agglomeration and dynamic agglomeration intensity. The
“High-High” and “Low-Low” risk agglomeration areas constitute the
basic spatial skeleton of the regional ecological security pattern, highly
coinciding with the ecologically sensitive zones in the plain hinterland
and the ecological barrier in the western mountainous area, respectively.
Meanwhile, fluctuations in the global agglomeration intensity suggest that
its spatial structure is undergoing dynamic reorganization.

Third, regarding the driving mechanism, natural background conditions
are the dominant factor in risk spatial heterogeneity, with mean annual
temperature and DEM being the core driving factors. However, factor
interaction detection reveals that LER is ultimately shaped by the nonlinear
coupling of the natural-socioeconomic system. The interactive explanatory
power of DEM and socioeconomic factors exceeds 50%, highlighting the
profound impact of human activities on altering natural patterns.

Fourth, regarding future scenarios, the multi-scenario simulations provide
clear warnings and guidance for policy choices. The ELD scenario is the
most effective pathway for achieving fundamental optimization of ecological
risk; whereas the CD scenario demonstrates the feasibility of balancing

development needs with ecological protection, but its success highly
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depends on precise ecological spatial management control. The research
indicates that deeply integrating the ecology-priority principle into territorial

spatial planning is key to ensuring sustainable urban development.
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